Statistics 110: Introduction to Probability Fall 2022

Final Review

Skyler Wu (skylerwu@college.harvard.edu) Catherine Huang (catherinehuang@college.harvard.edu)

Final Preparation Tips

Just like our midterm review guide, the aim of this final review guide is to provide general problem-solving
strategies and help you recognize common problem types that will be on the final exam. Feel free to reach
out to us if you have any questions or concerns - we're here for you, and our contact information is below!
Most importantly, please do not stress too much. We’ve all seen how hard you’ve worked this
semester. Hard work will get paid off!

Below are some useful study action items, listed in a suggested order (your specific workflow may vary):

1. Read chapters 1-12 of Introduction to Probability (chapters 5-12 cover post-midterm material).

2. Create personal review sheets (yes, there are some cheat sheets already on Canvas, but writing concepts
down yourself is another effective sweep of the information).

3. Work through as many practice finals as possible and carefully review the solutions after. You will
generally be able to identify common threads and tricks as you do more and more practice problems.

4. For extra support: work through some past section and homework problems. If you have extra time,
strategic practice problems (in Canvas) and other practice problems in the textbook are also helpful!

5. For more in-depth, extra-explanation-filled material review, please reference Matt DiSorbo’s (AB ’17)
excellent virtual textbook, Probability, a companion guide to Stat 110:
https://bookdown.org/probability /beta/counting.html

During the course of today’s final review session, if you have any or all questions on specific concept clar-
ification, logistics, or would like us to work out a particular practice problem or past HW problem, please
send them to our Google Form here: http://bit.ly/CatSkylerl10FinalReview.

Our Contact Information

This review session will be our last formal teaching activity of the semester. However, please do not hesitate
to reach out to us via email or text for anything (legal):

Emails: skylerwu@college.harvard.edu and catherinehuang@college.harvard.edu
Phone numbers: Feel free to text us!

1. Skyler: (858) 205-9095
2. Catherine: (408) 707-7196

Final Remarks

Thank you everyone for such an amazing semester! TFing was undoubtedly one of the highlights of our
semester, and we’ve truly learned and grown so much from serving as your TFs. We hope you found our
teaching at least somewhat marginally helpful towards your statistical studies. With that said, it was an
honor to serve as your TFs. Godspeed and best of luck on the final exam and your educational journey.
Y’all are gonna do fire.

Skyler and Cat, signing out.


skylerwu@college.harvard.edu
catherinehuang@college.harvard.edu
https://bookdown.org/probability/beta/counting.html
http://bit.ly/CatSkyler110FinalReview
skylerwu@college.harvard.edu
catherinehuang@college.harvard.edu
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1 Concept Review

1.1 Introduction to Continuous Random Variables
1.1.1 General Principles of Continuous Random Variables

We present this subsection in a Q&A format for readability and understanding:

1. What is a Continuous Random Variable? A continuous random variable can take on any possible
value within a certain interval (for example, [0, 1]), whereas a discrete random variable can only take

on variables in a list of countable values (for example, all the integers, or the values 1, %7 i %7 etc.).

Formally, a random variable is continuous if its CDF if differentiable. However, it’s OK if the CDF is
continuous but not differentiable at a finite number of points, like endpoints!

2. Do Continuous Random Variables have PMFs? No. If X is a continuous random variable,
then P(X = z) = 0 for any value z! Continuous random variables are continuous intervals,
meaning the probability that the r.v. crystallizes to, say, exactly 1.00000...is infinitesi-
mally small. You may be asked to find whether a complex-looking random variable is discrete or
continuous, and it might not seem obvious at first glance. This fact may be useful!

Instead of PMFs (bad!), we can describe a continuous r.v. using its PDF (probability density function)
— see below.

3. How to I find the probability that a continuous random variable takes on a value within
an interval? Use the CDF (or the PDF, see below). To find the probability that a continuous random
variable takes on a value in the interval [a,b], subtract the respective CDFs.

Pla<X <b)=P(X <b)—P(X <a)=F(@)— F(a)
What is the Cumulative Density Function (CDF)? It is the following function of x.
F(z) = P(X <x)
With the following properties.
1) F is increasing.
2) F is right-continuous.
3) F(z) > lasx — oo, F(z) = 0as z = —o0.

4) F is differentiable. (mentioned earlier)

4. What is the Probability Density Function (PDF)? For continuous r.v. X with CDF F, the
PDF, f(z), is the derivative of the CDF, given by
flx) = F'(x).
We can go from PDF to CDF by integrating. Notice the limits of integration!

F(z) = [ F(t)dt.

Note that by the fundamental theorem of calculus,

b
F(b) — F(a) = / f(x)dx.

Thus to find the probability that a continuous random variable takes on a value in an interval, you can
integrate the PDF, thus finding the area under the density curve.

The support of X is the set of all z € R where f(z) > 0. You might be wondering, didn’t see just say
earlier that the probability that X takes on any specific value is 0¢ That is still true — the quantity
f(z) is not a probability, and we can even have f(z) > 1 for some values of z. Watch out for
category errors here!

Two additional properties of a PDF:



1) It must integrate to 1: [*_ f(z) =dz =1.
2) The PDF must always be nonnegative. f(z) > 0.

5. How do I find the expected value of a continuous random variable? Where in discrete cases
you sum over the probabilities, in continuous cases you integrate over the densities.

B(X) = /oo of (2)de

— 0o

The integral is taken over the entire real line, but if the support of X is not the entire real line, we can
just integrate over the support.

6. Review: Expected value is linear. This means that for any random variables X and Y and any
constants a, b, ¢, the following is true:

E(@X +bY +¢)=aBE(X)+bE(Y)+c

1.1.2 Discrete versus Continuous

Discrete Continuous
P(X <z)= F(z) (CDF) F(z) (CDF)
To find probabilities, Add over PMF P(X = x) Integrate over PDF f(x) = F’(x)
E(X) = S, aP(X = 1) T @)
E(g(X)) = >, 9(x)P(X = z) (LOTUS Discrete) [~ g(z) f(z)dz (LOTUS Continuous)

1.1.3 Law of the Unconscious Statistician (LOTUS)

1. How do I find the expected value of a function of a random variable? Normally, you would
find the expected value of X this way:

E(X)=%Y2P(X =)

LOTUS states that you can find the expected value of a function of a random variable g(X) this way:

E(9(X)) = Zag(x) P(X = x)

Amwxnz/mguvuwx

2. What’s a function of a random variable? A function of a random variable is also a random
variable. For example, if X is the number of bikes you see in an hour, then g(X) = 2X could be the
number of bike wheels you see in an hour. Both are random variables.

3. What’s the point? You don’t need to know the PDF/PMF of g(X) to find its expected value. All
you need is the PDF/PMF of X.



1.1.4 Variance, Expectation and Independence, and ¢* Taylor Series

1.

2.

3.

1.2

The following Taylor series will be very helpful when working with Poisson distributions (introduced

soon below):

x __ - €
e = Z m
n=0
Recall that variance is defined in the following manner:
Var(X) = E(X?) - [B(X)]?
If X and Y are independent, then
E(XY)=E(X)E(Y)

Descriptions of Named Continuous Random Variables (and Poisson)

1.2.1 Poisson Distribution (Discrete)

We include Poisson in this section because it was only touched upon right before the midterm exam, and
because of its connections to continuous random variables such as the Gamma and Exponential distributions.
Let us say that X is distributed Pois(\). We know the following;:

1.

Story: There are rare events (low probability events) that occur many different ways (high possibilities
of occurences) at an average rate of A\ occurrences per unit space or time. The number of events that
occur in that unit of space or time is X.

Example: A certain busy intersection has an average of 2 accidents per month. Since an accident is
a low probability event that can happen many different ways, the number of accidents in a month at
that intersection is distributed Pois(2). The number of accidents that happen in two months at that
intersection is distributed Pois(4).

PMF: The PMF of X ~ Pois(}) is:

e MNP
P(X =k)= o
The support of X is {0,1,...}.
. Expectation:
E(X)=2AX
. Variance:
Var(X) = A.
. Chicken-Egg Story: Say that a chicken lays N ~ Pois(\) eggs and that each one has a probability

p of hatching, independently of other eggs. Let ¢ =1 —p. Let X be the number of eggs that hatch and
Y be the number of eggs that do not. Two elegant facts arise from this:

(a) X ~ Pois(Ap), and Y ~ Pois(Aq)

(b) X and Y are independent.

. Useful Properties:

(a) Sum of Independent Poissons: If X ~ Pois(\;) and Y ~ Pois()2), with X L Y, then
X =+ Y ~ POiS()\l —+ )\2)
(b) Poisson given a sum of Poissons is Binomial If X ~ Pois(\;) and Y ~ Pois(A2), with
X 1Y, then the conditional distribution of X given X +Y =n is
At
Bin (n, )
A1+ A2
(c) Binomial taken to its limits is approximately Poisson: Let X ~ Bin(n,p). Let n — oo
and p — 0, with A = np staying fixed. Then, the PMF of X converges to the Pois(A) PMF.




1.2.2 Uniform Distribution (Continuous)

Let us say that U is distributed Unif(a,b). We know the following:

1. Intuitive Definition: U is just a completely random number between a and b: mathematically, this
means that the PDF of U is constant over the interval (a,b). So, when you integrate over the PDF,
you will get an area proportional to the length of the interval.

2. Probability Proportional to Length: For a uniform distribution, the probability of an draw from
any interval on the uniform is proportion to the length of the uniform.

Mathematically, let U ~ Unif(a,b). Let (c,d) be a subinterval of (a,b) with d — ¢ = 1. Then, we have
Plc<U<d)xd—c=1.

Specifically, we also know that
d—c l

P(c<U<d):b_a —

3. Conditional Distribution: Let U ~ Unif(a,b) and let (¢,d) be a subinterval of (a,b). Then, the
conditional distribution (more on that later) of U given U € (c,d) is simply Unif(c, d).

4. “Standard Uniform”: If U is “standard uniform,” this just means that U ~ Unif(0, 1).

5. Example: Bob throws darts really badly, so his darts are uniform over the whole room because they're
equally likely to appear anywhere. Bob’s darts have a uniform distribution on the surface of the room.
The uniform is the only distribution where the probably of hitting in any specific region is proportion
to the area/length/volume of that region, and where the density of occurrence in any one specific spot
is constant throughout the whole support.

6. PDF and CDF:

1 z€l0,1] 0 r<0
Unif(0, 1) flx) = { 0 ¢ [07 1] Flz)=¢ = x€]0,1]
’ 1 z>1
0 z<a
. =2 T €ab r—a
Unif(a. ) ra={ 5 rgl) Fla)={ £ welal
’ 1 x>b
7. Expectation:
If U ~ Unif(a, b), then
a+b
EU) = 5
8. Variance: ) )
Var(U) = ( I;)

9. Universality of Uniform In words, when you plug any random variable into its own CDF, F'| you
get a Unif(0, 1) random variable. For any continuous random variable X, we can transform it into a
uniform random variable and back by using its CDF.

Let X be a continuous random variable, with CDF F. Because F' is continuous and strictly increasing
on X's support, F~1:(0,1) — R exists.

We have the following results, which we pack into a property called the Universality of the Uniform:

1) Let U ~ Unif(0,1) and X = F~}(U). Then X has CDF F.



e This says that if we start with U ~ Unif(0,1) and a CDF F, then we can create a random
variable X whose CDF is F, by plugging U into the inverse function F~!.

e Fundamentally, F~1(U) is a function of a random variable, and recall that functions of random
variables are random variables too!

e Universality of the Uniform just says this #~!(U) random variable has CDF F.

2) Let X be a random variable with CDF F. Then F(X) ~ Unif(0,1).

e For this part, we start with a random variable X with CDF F, and our goal is to use these
“resources” to construct a Unif(0,1) random variable.

e Universality of the Uniform says we can do this by plugging random variable X into its own
CDF F.

Example Let’s say that a random variable X has a CDF

Flz)=1—¢e"".

By the Universality of the the Uniform, if we plug in X into this function F', then we get a uniformly
distributed random variable.
F(X)=1-e% ~ Unif(0,1).

Similarly, since F((X) ~ U then X ~ F~Y(U). The key point is that for any continuous random
variable X, we can transform it into a uniform random variable and back by using its
CDF.

1.2.3 Normal Distribution (Continuous) (a.k.a. Gaussian)

The Normal distribution is a famous continuous distribution with a bell-shaped PDF. Let us say that X is
distributed NV (p, 0%). We know the following:

1. PDF: 1
2
1 -— (T -
fa) = . 552 (&= 1)
oV 2T

2. CDF': It’s too difficult to write this one out. We express the CDF of the Standard Normal Z as the
function ®(x).

3. Standard Normal: The Standard Normal, denoted Z, is Z ~ N (0, 1).

4. Short-Hand Expressions: The N(0,1) PDF and CDF are typically quite unwieldy, so we define the
following:

(a) Let (z) represent the PDF of a Standard Normal (i.e., A'(0,1)) random variable.
(b) Let ®(z) represent the CDF of a Standard Normal random variable.

5. Expectation: For X ~ N (u,0?),
E(X)=n

6. Variance:
Var(X) = o?
Note that the first and second parameters of a Normal random variable are the expectation and variance
of that variable, respectively!

7. Symmetry: Here are some helpful symmetry properties of the Standard Normal PDF and CDF.
Again, these only apply to the PDF and CDF of the Standard Normal distribution, Did we mention
that these properties only apply for Standard Normal random variables!

(a) Symmetry of PDF: ¢(z) = ¢(—z) (i.e., ¢ is an “even” function)



(b) Symmetry of Tail Areas: ®(z) =1 — &(—=z)
(¢) Symmetry of Z ~N(0,1): P(—Z <z)=P(Z>—-2)=1—®(—2)
8. Scaling and Transformation Properties In general, intuitively, every time we stretch or scale a
Normal random variable, we end up changing it into another Normal random variable:
(a) If we add ¢ to a Normal random variable, then its mean increases additively by c.

(b) If we multiply a Normal random variable by ¢, then its variance increases multiplicatively by c2.
Formally, we present the following concepts:

(a) Definition: Let Z ~ N(0,1). If X = pu + oZ, then we say that X is Normal, with mean p
and variance o2. Note that ¢ must be > 0, else you would have a degenerate random variable.

Symbolically, we write:
X ~ N(u,0?)

(b) Standardization: Let X ~ N(u,02). Then, 2=£ ~ N(0,1). The random variable = is
called the “standardized version” of X.

(c) PDF and CDF of a Normal Random Variable: Let X ~ N (p,02). Let f(z) and F(x) be
the PDF and CDF of X, respectively. Then, we have the following:

f@) = o2t 1

(2 g

9. Sum of independent Normals is Normal: If X ~ N (ux,0%) and Y ~ N (uy, 0% ) are independent
Normal r.v.’s, then means and variances are both additive. Formally,

X +Y ~N(ux + py, 0% +0v).

Furthermore,
aX +bY ~ N(apx + buy,a’c% + b*0%).

1.2.4 Exponential Distribution (Continuous)
Let us say that X is distributed Expo(A). We know the following:

1. Story: You're sitting on an open meadow right before the break of dawn, wishing that airplanes in the
night sky were shooting stars, because you could really use a wish right now. You know that shooting
stars come on average every 15 minutes, but it’s never true that a shooting star is ever ”due” to come
because you’ve waited so long. Your waiting time is memorylessness, which means that the time until
the next shooting star comes does not depend on how long you've waited already.

2. Example: The waiting time until the next shooting star is distributed Expo(4). The 4 here is A, or
the rate parameter, or how many shooting stars we expect to see in a unit of time. The expected time
until the next shooting star is %, or i of an hour. You can expect to wait 15 minutes until the next
shooting star.

3. All Exponentials are Scaled Versions of Each Other: We can use scaling to get from the simple

Expo(1) to the general Expo(A) : if X ~ Expo(1), then

X
Y = 5~ Expo(A).

Conversely,
Y ~ Expo(A) = X =AY ~ Expo(1)



4. PDF and CDF: The PDF and CDF of a Exponential is:

f(z) =xe™, z€0,00) Fz)=P(X <z)=1—e** 2€[0,00)

5. Expectation and Variance: If X ~ Expo(1), we can obtain F(X) and Var(X) through standard
integration: E(X) =1, and Var(X) = 1. For general Y = £ ~ Expo(\), we have

B(Y) = 1 B(X) = .
Var(Y) = %Var(X) = %

6. Memorylessness: The Exponential Distribution is the sole continuous memoryless distribution. This
means that it’s always “as good as new”, which means that the probability of it failing in the next
infinitesimal time period is the same as any infinitesimal time period. This means that for an expo-
nentially distributed X and any real numbers ¢ and s,

P(X >s+tX >s)=P(X >1t).

Given that you've waited already at least s minutes, the probability of having to wait an additional ¢
minutes is the same as the probability that you have to wait more than ¢t minutes to begin with. Here’s

another formulation.
X — s|X > s ~ Expo(A).

Conditional on X > s, the additional waiting time X — s is still distributed Expo(A). This further
implies that

1
E(X|X>s):s+E(X):s+X.

1.2.5 Beta Distribution (Continuous)

1. Story: The Beta distribution is continuous on the internal (0, 1) and is a generalization of the Unif(0, 1)
distribution (allowing the PDF to be non-constant on that interval). Let us say that X is distributed
Beta(a, b), where a > 0 and b > 0.

2. PDF: The PDF of a Beta(a,b) r.v. is

.’L‘a_l(l _ l‘)b_l,

B(a,b)

r b
where the constant = (a+b) is the Beta normalizing constant, chosen to make the PDF
Bla,b) — T(a)I'(b)

integrate to 1. (I is the Gamma function. We’ll learn about some cool properties of the Gamma
function later!)

3. Properties of the Beta Distribution:

a
a+b

(a) If X ~ Beta(a,b), then p = E(X) =

_ a1 —p)
(b) Var(X) = PR

(¢) If a < 1 and b < 1, the PDF is U-shaped and opens upward. If @ > 1 and b > 1, then the PDF
opens down.

(d) If @ = b, the PDF is symmetric about 1/2. If a > b, the PDF favors values larger than 1/2, and
if a < b, the PDF favors values smaller than 1/2.

(e) Beta(1,1) ~ Unif(0,1). (Plugin a =1 and b = 1 to the PDF to verify!)



4. Bayes’ Billiards We include this fact mainly because the integral presented below closely resembles
integrating a Beta PDF. For any integers k and n with 0 < k < n,

Ln\ . & 1
1—z)" = .
/0 (k>x (1—2)" "dx ——

We show that left hand side (LHS) equals right hand side (RHS) through the same scenario: Start
with n + 1 balls, n white and 1 gray. Let’s randomly throw each ball onto the unit interval [0, 1], and
let X be the number of white balls tot he left of the gray ball; X € {0,1,...,n}.

LHS: To get P(X = k), we can use LOTP, conditioning on the position of the gray ball. Conditioning
on the gray ball being at position p in the [0, 1] interval, the number of white balls landing to the left
of p is distributed Bin(n, p). We get the left hand side of Bayes’ Billiards from LOTP, conditioning on
the position of the gray ball (which is distributed Unif(0, 1)).

RHS: Note that it doesn’t matter what we do first — assign the colors of the balls or throw them. We

can first randomly throw each ball onto the interval and only then choose one ball at random to paint
1

gray. By symmetry, any one of the n+41 balls is equally likely to be painted gray, so P(X = k) = T
n

Since both sides of the equation equate to P(X = k), they are equal. Bayes’ Billiards is both a useful
result in and of itself and a way for us to solve for the Beta normalizing constant without using calculus:

1
Because PDFs must integrate to 1, the normalizing constant 3(a,b) satisfies 8(a,b) = [z (1 —
0

1
2)?=1dz. If we substitute a — 1 for k and b — 1 for n — k, it follows that (“7°7?)B(a,b) = a1 %
a+tb—
1 (a—1)1(b—1)!
a,b = =
Bla,b) (a+b—1)(""7?) (a+b—1)!

1.2.6 Gamma Distribution (Continuous)

1. PDF: A random variable Y ~ Gamma(a, A), where a > 0 and A > 0, has the following PDF, for
support y > 0. The “I'"” symbol represents the Gamma function, discussed below.

1 1
()\y)ae_ky ™

f(l/):@ Y

2. Gamma Function: The Gamma function I' is an extension of the factorial function to all real (and

complex) numbers, with the argument shifted down by 1. In closed form, the Gamma function is
defined as:

F(n):/ t"letdt.
0

For the purposes of this class, you do not need to know or use the closed-form definition. Rather, pay
attention to the below handy properties of the Gamma function:

(a) Recursive definition: I'(a + 1) = aI'(a) for all a > 0.

(b) Factorial generalization: I'(n) = (n — 1)! if n is a positive integer.

We can use these properties, along with pattern-matching, to find the mean, variance, and other
moments of the Gamma distribution (not shown).

3. Mean and Variance: If X ~ Gamma(a, \),

10



3. B(X°) = L. ——,C> —a.

4. Properties:

L. If X ~ Gamma(a, ), then cX ~ Gamma(a, 2).
2. If X ~ Gamma(a,\) and ¥ ~ Gamma(b,\), and X and Y are independent, then X +Y ~
Gammal(a + b, \).

5. Connections to Exponential: The Gamma distribution is a generalization of the Exponential dis-
tribution. In fact, the Gamma(a, ) random variable is the sum of a i.i.d Expo(\) random variables.
Again, if X1,..., X, ~""% Expo()\), then

X1+ ...+ X, ~ Gamma(a, \).

6. Beta-Gamma Connection: The Bank-Post Office Story The Bank-Post Office story gives us a
really neat way to connect the Beta and Gamma distributions. While running errands, you decide to
go to the bank and then to the post office. Let X ~ Gamma(a, A) be your waiting time at the bank
and Y ~ Gamma(b, \) to be your waiting time at the post office, with X and Y independent. Let

T = X +Y be the total wait time and W = X1y
the bank. The Bank-Post Office story tells us the following;:

be the fraction of the waiting time you spent at

e T ~ Gamma(a + b, \)
e W ~ Beta(a,b)
e T (the total) and W (the fraction) are independent!

e We can also use these findings to find Beta expectation and the Beta normalizing constant —
without any calculus!

1.2.7 2 Distribution (Continuous)

We now introduce the second-to-last continuous distribution in Stat 110: the x? distribution. We present
the definition and a few useful properties:

1. Definition: Let V = Z? + - + Z2 where Z; ... Z, are i.i.d N(0,1) random variables. Then, we say
that V has a “Chi-Square distribution with n degrees of freedom.” Symbolically, we write:

Vs
2. Theorem (Special Gamma): 2 is a special case of the Gamma distribution. Specifically, we have:

9 n 1
~ Gammal(5. 3)
Xn amma 53

3. Theorem (Mean and Variance): Let V ~ x2. Then, we have the following:
EV)=n
Var(V)=2n
We can use linearity of expectation and/or properties of Normal to derive the two results below.

4. Useful Fact (Sample Variance of Normals): Let Z; ... Z, bei.i.d N(u,c?) random variables. We
define S2, the “sample variance” of Z; ... Z,, as:

1 « _
52 = — Z(zj —7Z,)?
j=1

11



It turns out that S2 (after appropriate scaling) is Chi-Square. Specifically, we have:

(n— 1)37% 2

o2 ~ Xn—1

Note that the sample variance S? is “unbiased” for estimating the true variance, 2. Mathematically,
this means that E(S?) = o2.

1.2.8 Student-t Distribution (Continuous)

We now introduce the very last continuous distribution in Stat 110: the Student-¢ distribution. We present
its definition and a few useful properties:

1. Definition: Let Z ~ N(0,1), V ~ x2, and let Z be independent of V. Define T as the following:

Then, we say that T has a “Student-t distribution with n degrees of freedom.” Symbolically, we write
that T' ~ t,.

2. Properties of Student-t: We present three useful properties of the Student-¢ distribution:

(a) Symmetry: If T ~ t,,, then =T ~ t,,.
(b) Cauchy (t1): Recall that the Cauchy distribution can be thought of as the ratio of two i.i.d. N(0,1)
random variables. As such the ¢; distribution is the same thing as the Cauchy distribution.

(¢) Convergence to Normal: As n — oo, the ¢, distribution approaches the standard Normal distri-
bution. For finite n, the ¢-distribution PDF has fatter tails than that of the standard Normal
distribution.

1.3 Conjugacy Relationships
1.3.1 Beta-Binomial Conjugacy

Let p be a random variable € [0, 1], and suppose our goal is to estimate p after observing some Binomially-
distributed data with parameter p. As an example, suppose we have a coin that lands Heads with probability
p, but we don’t know what p is. We can only infer what p is after observing coin tosses — if we observe n
tosses, the number that come up as Heads is distributed Bin(n, p). Formally, our setup is

p ~ Beta(a, b),
X|p ~ Bin(n, p).

Note that X is not marginally Binomial; it is only conditionally Binomial, given p. (The marginal distribu-
tion of X is called the Beta-Binomial distribution.

Beta-Binomial conjugacy tells us that the posterior distribution of p after observing X = k, is
p/(X = k) ~ Beta(a+ k,b +n — k).

This relationship is fascinating: when going from prior to posterior distributions of p, we don’t leave the
family of Beta distributions! We just add the number of observed successes, k, to the first parameter of the
prior Beta (a), and the number of observed failures, n — k, to the second parameter b.

We say that Beta is the conjugate prior of the Binomial because if p has a prior distribution that is
Beta-distributed, then the posterior distribution of p given observed data is also Beta-distributed.

Given that we never leave the Beta family when going from prior to posterior, we can sequentially update
our beliefs as we get more and more evidence.

12



1.3.2 Gamma-Poisson Conjugacy

Consider a Poisson process with a rate of arrival of A (for example, buses per hour), where A is unknown.
Let us place a prior of A ~ Gamma(rg, bo) on this unknown rate, \: ro and by are known, positive constants
and rq is an integer. Let Y be the number of buses that arrive in a period of ¢ hours. Mathematically, by
our understanding of the Poisson process, our story has the following setup:

A ~ Gamma(rg, bo)
Y|\ ~ Pois(At)
We obtain the following results:

1. Marginally, we have the following distribution for the number of arrivals in ¢ hours:

. bo
Y ~NB _—
in(ro, byt t)

2. Conditional on our observation that Y = y, we have the following posterior distribution for A:

AY =y ~ Gamma(rg + y, by + t)

3. Intuitively, we can imagine that there had been ry buses in by hours. We are just incrementing the
number of bus arrival counts, and of course, our total time.

1.4 Poisson Processes

The Exponential, Poisson, and Gamma distributions are linked by a common story, which is the story of
the Poisson process. A Poisson process is a sequence of arrivals occurring at different points in continuous
time, such that the number of arrivals in a particular interval of time has a Poisson distribution. A Poisson
process with rate A has the following properties:

1. The number of arrivals that occur in a continuous interval of length ¢ is a Pois(At) random variable.

2. The numbers of arrivals that occur in disjoint time intervals are independent of each other. For example,
the numbers of arrivals in the time intervals (0, 10), [10,12), and [15, c0) are independent.

Theorem (Count-time duality). In a poisson process, if T;, is the time until the nth arrival (continuous)
and N; is the number of arrivals before or at time ¢ (discrete), then

P(T,, >t) = P(N; <n).
Count-time duality connects a discrete random variable Ny, which counts the number of arrivals, with a
continuous random variable T;,, which marks the time of the nth arrival. The event that the nth arrival has

not happened yet as of time ¢ is equivalent the event that up until time ¢, there have been fewer than n arrivals.

Inter-arrival times: Since N; ~ Pois(\t), we have that
P(Ty >t)=P(N;=0)= ———— =¢ ",

by count-time duality.

P(Ty <t) =1—e ™, and this is the Expo(\) CDF! (Great teaching moment here: pattern-matching ez-
pressions to known CDFs and PDFs is an effective problem solving strategy.)

Hence, by count-time duality, the times between arrivals are i.i.d Expo(\)!
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Independence of inter-arrival times: Combining count-time duality, part (2) of the definition (disjoint
time intervals of Poisson processes are independent), and memorylessness of the Exponential, we have that
the inter-arrival times are i.i.d Expo(\) random variables. T} 1L To — T}: the time intervals in question are
disjoint, so whatever happened before the first arrival is irrelevant once the first arrival occurs. As such,
Ty — Ty also has an Expo()\) distribution. The same goes with T5 — 75 : T5 — T ~ Expo()\), independently
of both T1 and T5 — T3.

Total time until nth arrival: What is the distribution of T,, the total time until the nth arrival? Let’s
start with n = 2. Ty is the sum of two independent Expo(A) random variables, T} and T — T;. This
sum is NOT distributed Expo. Do not make this category error! This sum follows another named
distribution that we have not yet learned, so (1) don’t worry about it for now, but (2) don’t erroneously
say T, ~ Expo.

1.5 Moment Generating Functions (MGF's)

Before we talk MGF's, we should define what in the world a “moment” is (and some other important terms).
Let X be a random variable with mean y and variance o2. And, let n be a positive integer.

1. Definition: The “n'” moment of X” is defined as E(X™).
2. Definition: The “n'" central moment of X” is defined as E((X — u)™).
3. Definition: The “n*" standardized moment of X” is defined as E((Z=£)").

Definition: For any random variable X, the

following, where t is a dummy variable.

‘moment generating function” (MGF) of X is defined as the

Mx (t) = E(e'X)

The purpose of the ¢ is simply to serve as a dummy variable / placeholder and to keep the MGF as an actual
function (of t), rather than just some fixed constant. We say “the MGF exists” if Mx () is finite on some
open interval (—a,a) containing 0. Otherwise, we say that “the MGF of X does not exist.”

Below are some fundamental properties of the MGF:

1. The MGF “determines the distribution”: If two random variables X and Y have the same MGF, then
they must have the same distribution! Note that even if Mx (t) = My (¢) only on a super tiny interval
(—a,a) containing 0, then X ~ Y. Warning: the MGF says nothing about whether X and Y are equal
or independent.

2. Extracting Moments: The n'®* moment of a random variable X, denoted as E(X™"), can be found by
evaluating the n'" derivative with respect to tr of its MGF, Mx (), at t = 0. Mathematically, we write
the following:

B(X") = M{(0)
3. Taylor Series and Pattern-Matching: used to derivative the above moment-extracting formula.
e The Taylor series expansion of Mx (t) about 0 is written below:
&
n!’

M (t) = fj M{(0)

n=0

e By LOTUS, we also have
o0
tn
tX n
M(t)=E(*)=F ( E_OX n!) .

e We are allowed to move the expectation to inside the sum. The math behind this is gnarly, but
we can write

M(t) = ZE(X”)%.
n=0 :
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e By pattern-matching the coefficients of the two expansions, we get E(X™) = M ™) (0).

4. MGF of the Sum of Two Independent Random Variables: Let X and Y be two independent random
variables with MGFs Mx (t) and My (t), respectively. Then, the MGF of the random variable X + Y,
denoted as Mx vy (t), is as follows:

Mx 4y (t) = Mx (t) My (1)
5. MGF of a Location-Scale Transformation: Let X be a random variable with MGF Mx (t). Let Y =
a + bX, for constants a,b. Then the MGF of Y, denoted as My (t), is as follows:
My(t) — E(etY) — E(et(a+bX)) — E(eateth) — eatE(e(tb)X) _ eatMX(bt)

*a note on notation: M)((k) (t) refers to the k'™ derivative of the MGF of X, Mx (t), with respect to t.

1.6 Joint, Marginal, and Conditional Distributions

Let X and Y be two random variables (possibly dependent). We define the following;:

1. Joint Distribution: The joint distribution of X and Y describes the probability of the vector (X,Y)
falling into any subset of the R? plane.

2. Marginal Distribution: The marginal distribution of X is the individual distribution of X, ignoring
whatever behavior or influence Y might have.

3. Conditional Distribution: The conditional distribution of X given Y is the updated distribution
for X after observing Y =y (i.e., Y crystallizing to some specific value).

A few remarks:

1. Joint distributions typically contain more information than marginal distributions. Intuitively, this
is because we can always derive the marginal distribution of a random variable X from its joint
distribution with another random variable Y.

2. If X and Y are independent random variables, then their joint PMF/PDF (depending on whichever
one is relevant) is just the product of their marginal PMF/PDFs! As such, we do not get any additional
information from studying X and Y jointly.

1.6.1 Joint Distributions

We begin by defining the following terms:
1. Joint CDF': For any 2 random variables X and Y, the joint CDF is defined as the following:

Fxy(z,y) =P(X <z,Y <y)
Furthermore, using the CDF F(z,y), the probability that (X,Y) falls into the 2D rectangle [z1, 23] X
[ylv yQ} is
Py <X <wo,y1 Y <o) = F(w2,y2) — F(21,92) — (F(mz,m) - F($17y1)>-

Note that if X and Y are discrete, then the joint CDF may have many jumps and flat-regions, making
it hard to work with.

2. Joint PMF: For 2 discrete random variables X and Y, the joint PMF is defined as the following:
pxy(@y) =P(X =2,Y =y)

Just like regular univariate PMF's, joint PMFs should also sum up to 1. Specifically, we mean that we
are summing over all possible values of X and Y. Mathematically, we write:

Y)Y PX=aY=y=1
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3. Joint PDF For 2 continuous random variables X and Y, the joint PDF is defined as the following:

82
fxy(z,y) = 8Té‘yFX’Y(x’y)’ where Fxy is the joint CDF of X and Y.

With less fancy math symbols, the joint PDF is obtained by taking the partial derivative of the joint
CDF with respect to z, and then taking the partial derivative again with respect to y.

As with all PDF's in general, the joint PDF must integrate to 1. Mathematically, we mean

|| tertaisay =1

Of course, the joint PDF must also be nonnegative for all values of X and Y.

We can use the joint PDF to find the probability that X and Y will be in a particular region of values.
Let’s look at the following examples:

5 4
P1<X<42<Y <5)= / / fxy(x,y)dxdy
2 1

5 4
P(X <4,2<Y <5h) = / / fxy(x,y)dzdy
2 —o0
P(X <Y) :/ / fxy(x,y)dzdy

1.6.2 Marginal Distributions

Discrete Random Variables

Let us start by taking X and Y to be 2 discrete random variables. To recap, we’ve seen the following
definitions:

1. Marginal PMF': The marginal PMF of X is defined as the following (with no concern for Y):

2. Marginal CDF: The marginal CDF of X is defined as the following (with no concern for Y):
P(X <z

Now, we can derive the marginal PMF and marginal CDF of X from their joint distribution counterparts:

1. Marginal PMF from Joint PMF: We can derive the marginal PMF of X from the joint PMF of
X and Y by summing over all possible values of Y:

P(X=x)=) P(Y=yX=nz)

2. Marginal CDF from Joint CDF: We can derive the marginal CDF of X from the joint CDF of X
and Y by taking the limit as y approaches infinity:

P(X <z)= lim P(X <z,Y <y)

Y—00
Continuous Random Variables

Now, let us take X and Y to be 2 continuous random variables. Recall the following definitions:
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1. Marginal PDF: The marginal PDF of X is defined as the following (with no concern for Y):

d
fx(x) = d—FX(Jc)7 where Fx is the marginal CDF of X.
x

2. Marginal CDF': The marginal CDF of X is defined as the following (with no concern for Y'). Note
this is the same definition from the discrete case.

P(X <ux)
We can derive the marginal PDF and marginal CDF from their joint counterparts:
1. Marginal PDF from Joint PDF: We can derive the marginal PDF of X from the joint PDF of X
and Y by integrating over all possible values of Y:
fx@ = [ IxrGudy
—0o0

2. Marginal CDF from Joint CDF': See discrete section. Literally, copy-paste.

1.6.3 Conditional Distributions

Discrete Random Variables

Again, let us start by taking X and Y to be 2 discrete random variables. We explore and define the following:
1. Conditional PMF: The conditional PMF of Y given X = z is defined as the following:

PY =y X =2)

PY=y|X=2)= PX =)

We should state here that there could potentially be a different conditional PMF for every possible
value of X!

2. Conditional PMFs are still PMFs: Like all PMFs, a conditional PMF should sum up to 1 over
all possible values of Y (while holding X as fixed). Mathematically, we mean:

Y PY=y|X=x)=1

3. Connections between Conditional PMFs: Notice how the conditional PMF looks kind of like
Bayes’ Rule? Well, that’s not a coincidence! We present the following relationship:

PX=z|Y=y)PY =y)

PY =y|X=a)= PX =)

Continuous Random Variables

Now, let us take X and Y to be 2 continuous random variables. We explore and define the following;:

1. Conditional PDF': The conditional PDF of Y given X = x is defined as the following, for all x with
fx(x) > 0. We typically view the conditional PDF of Y as a function of y, with z being fixed:

risty | o) = P80

Of course, conditional PDFs are PDF's,; so they must integrate to 1:

/_ frix(y | 2)dz =1
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2. Connections between Joint PDF and Conditional PDF: From our expression above, we can
derive the following:

fxy(z,y) = fyix(ylz) fx(z)
Ixy(@,y) = fxy(@|y) fr(y)

3. Continuous Form of Bayes’ Rule: Analogous to the discrete case, we have the following that
follows from our above statements:

fxyy (@[ y)fy(y)
fx(z)

frix(y|z) = , for fx(x) > 0.

4. Continuous Form of LOTP: Analogous to the discrete case, we obtain the following:
fx@ = [ pxrendy= [ fav i

1.6.4 Independence

Any 2 random variables X and Y are independent if the following condition holds, where F'x and Fy are
their marginal CDFs, and Fx y is their joint CDF:

Fxy(z,y) = Fp(z)Fy (y)

Discrete Random Variables
Now, if X and Y are both discrete, three equivalent conditions for X and Y being independent are the
following:

1. P(X =2,Y =y) = P(X =z)P(Y =)
2. P(Y=y| X =2)=P(Y =y)
3. PX=z|Y=y)=Plx=nx)

Note that these three equivalent conditions must hold for all possible values of X and Y'! If there exists any
values of X, Y for which any of these conditions fail, then X,Y are not independent!

Continuous Random Variables
Now, if X and Y are both continuous, three equivalent conditions for X and Y being independent are the
following:

L fxv(z,y) = fx(@)fv(y)
2. fyix(ylz) = fy(y)
3. fxiy(z|y) = fx(z)

As in the discrete case, note that these three equivalent conditions must hold for all possible values of X
and Y'! If there exists any values of X, Y for which any of these conditions fail, then X, Y are not independent!

Another test for independence of two continuous random variables X and Y is the following: suppose that
the joint PDF of fxy of X and Y can be factored as

Ixy(x,y) =g(x)h(y)

for all  and y, with g and h nonnegative functions. Then, we can conclude that X and Y are independent.
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1.6.5 2D LOTUS

Oftentimes, we may want to find the expectation of a random variable that is itself a function of two random
variables X and Y. In this situation, we use the 2D version of LOTUS:

1. Discrete Case: Let g be a function from R? to R. If X and Y are both discrete, we have the following:

E(g(X,Y)=>_> glx,y)- P(X =x,Y =y)

2. Continuous Case: Let g be a function from R2 to R. If X and Y are both continuous, we have the
following:

E(9(X,Y)) =/_Do /_Do 9(z,y) - fx v (z,y)dzdy

1.6.6 Hybrid Forms

It seems that we have not covered the cases for when X is discrete and Y is continuous, or vice versa. These
cases tend to be rarer and more nuanced than their purely continuous or discrete counterparts. We include
the following tables to account for these cases, relatively painlessly:

Y discrete Y continuous

X discrete NP X =Y =y)P(Y =y) [T P(X=2z|Y =y)fy(y)dy

Yy

X continuous S fx(z]Y =y)P(Y =vy) 25 fxy (@|y) fy (v)dy

Figure 1: Hybrid Forms of LOTP

Y discrete Y continuous
X discrete P(Y =y|X = o) = BE=L P00y (y|X = o) = BEST A=)
X continuous P(Y = y|X = z) = IxEV=uPE=y) fyix (ylz) = Ix1y @y fy (v)
4 7x (2) YIx ¥ Fx (@)

Figure 2: Hybrid Forms of Bayes’ Rule

1.7 Covariance and Correlation

Intuitively, covariance and correlation are two numerical summaries that measure the tendency for two
random variables to go up or down together relative to their means. Positive covariance (and by extension,
correlation) between X and Y suggests that as X increases, Y also tends to increase. Negative covariance
between X and Y suggests that as X increases, Y generally tends to decrease. We provide the following
formal definitions:

1. Covariance: The covariance between any two random variables X and Y is defined as the following:
Cov(X,Y)=E(X — EX)(Y — EY))
Equivalently, we have a (usually) simpler definition:

Cov(X,Y) = E(XY) — E(X)E(Y)
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2. Correlation: The correlation between any two random variables X and Y is defined as the following:

Cov(X,Y)

Corr(X,Y) = Var(X)Var(Y)

Intuitively, correlation is just a unit-less version of covariance in the sense that we are dividing by
the square root of the product of the variances. This way, we obtain a useful property of correlation:
correlation is always between —1 and 1.

An important theorem is that if any two random variables are independent, then they are uncorrelated (i.e.,
Corr(X,Y) =0). The reverse direction of this statement is not necessarily true!

Now, we present the following key properties of covariance:
1. Cov(X,X) =Var(X)
2. Cov(X,Y) =Cov(Y,X)

3. Cov(X,c) =0, for any constant c.

4. Cov(aX,Y) =aCov(X,Y), for any constant a.

5. Cov(X +Y,Z)=Cov(X,Z)+ Cov(Y, Z)

6. Coo(X+Y,Z4+W)=Cov(X,Z)+ Cov(X,W)+ Cov(Y,Z) + Cov(Y,IW)

7. Var(X+Y) =Var(X)+Var(Y)+2Cov(X,Y). No, this is not a typo! The “2” is very important!

8. In general, Var(X; 4+ -+ Xp,) =Var(Xy) + -+ Var(X,) + 2 ZCOU(XZ‘,XJ‘)

i<j
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1.8 Multivariate Distributions
1.8.1 Multinomial Distribution

The Multinomial distribution is a generalization of the Binomial distribution that accounts for multiple
possible outcomes, not just two (success or failure).

k
Let’s say that the vector X = (X1, Xs,..., Xg) ~ Multg(n, p) where p'= (p1,pa,... ,pk),ij =1.
j=1

We can say the following about X:

1. Story: We have n items, and each item can fall into any of k& buckets, independently of other items.
p; is the probability of the item falling into item j, for j € {1,...,k}. X; is the number of items in
bucket 1, X5 is the number of items in bucket 2, etc., so that X; + ...+ Xy = n.

2. Example: Every spring, assume that 2000 Harvard first-years are randomly and independently sorted
into one of 12 upperclassman houses with equal probability. The number of people in each of the houses
is distributed Multy5(2000, p), where p'= (1/12,1/12,...,1/12). Note that X; + Xa+...+ X312 = 2000,
and they are dependent.

3. Joint PMF: For ny,...,n; satisfying n; + ...ng = n, the joint PMF of X ~ Multg (n, p) is

n!

2, ng

P(X1=n1,...,Xp =ng) = k,'plnlpzn Pk

nilng!...n

You might be asking, where does the term come from? This term is called the multinomial

n1!n2! ce. ’I’Lk'
coefficient and represents the number of permutations of n objects where you have counts ny,ns, ..., ng

of each object.

4. Marginal PMF of each X;: The marginals of a Multinomial are Binomial: if X ~ Mult (n, p),
then X; ~ Bin(n,p;). In the marginal case, we only care whether items fall into bucket j or not — we
disregard the other buckets.

5. Lumping: For any distinct buckets ¢ and j, X; + X; ~ Bin(n, p; + p;). Think about this as merging
buckets 7 and j into one larger bucket and only caring about whether items fall into this larger bucket.
The random vector obtained from merging two buckets is still Multinomial, for example:

(X1, X2, X3) ~ Multz(n, (p1,p2,p3)) = (X1, X2 + X3) ~ Multa(n, (p1,p2 + p3)).

6. Conditioning: Suppose we know X, the number of objects in bucket 1. Our distribution for the rest
of the random vector (Xo, ..., X}) still follows a Multinomial distribution (with updated probabilities):

(Xay..., Xp)| X1 =ny ~Multg_1(n —ny, (ph, ..., 0k)),

Dbj

where p/ = ———— .
By p2+ ...+ Dk

We have to update our probabilities because we are in a new conditional “world,” and probabilities
must always add up to 1. This is just normalization.

7. Covariance: For i # j,
COV(XZ', X]) = 77‘Lplpj

This makes intuitive sense: since we have a fixed total number of items, if one bucket has more items,
some other bucket is more likely to have fewer items.
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1.8.2 Multivariate Normal Distribution
The Multivariate Normal distribution is a generalization of the Normal distribution into higher dimensions.
A vector X = (X1, Xa, ..., Xy) is Multivariate Normal (MVN) if any linear combination of the X is

Normally distributed. That is,
X1+t Xo + ..+ Xy

is Normal for any set of constants t1,ts,. .., k.

The parameters of the Multivariate Normal are the mean vector [ = (u1,...,u;) and the covariance
matrix where the (i,7)!" entry is Cov(X;, X;). You might be asking, why do we not need the variances
of each component to fully specify a Multivariate Normal? The variances of each component are already
encoded in the covariance matrix on the diagonal: Cov(X;, X;) = Var(X}).

We present the following properties of Multivariate Normal random vectors:

1. Sub-vectors: Any sub-vector of a Multivariate Normal is also Multivariate Normal. For example, if
(X1, X2, X3) is Multivariate Normal, then so is the subvector (X7, X2). This comes from the fact that
any linear combination of Multivariate Normal is also Multivariate Normal — we can just set 3, the
coefficient corresponding to X3, to 0.

2. Concatenation: If X = (X1,...,Xp) and Y = (Y1,...,Y,,) are Multivariate Normal, and X and
Y are independent, then the concatenated random vector (Xi,...,X,,Y1,...,Y,,) is Multivariate
Normal. Note that X and Y must be independent!

3. MGF: The joint MGF of a Multivariate Normal (X1,...,X}) is
1
E(€t1X1+”'+thk) = exp <t1E(X1) + ...+ tkE(Xk) + §Var(t1X1 + ...+ thk)) .

Notes about this:
e Here, “exp” stands for “e to the power of.”
e In general, the joint MGF of a random vector X = (X1,...,Xy) is defined as

Mg(f) = E(eﬁg) = BehXittteXey

for input ¢ = (t1,...,t) € R¥. Think about this as a multivariable generalization of the single-
variable MGF we learned a few weeks back.

*note: ¢ means the transpose of t.

4. Uncorrelated implies independent: If any two components of a Multivariate Normal random
vector are uncorrelated (i.e. correlation = 0), then they are independent.

Note that this does not generally apply to random variables and vectors! In general, we
only have guarantees that independence implies uncorrelated.
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1.9 Transformations

Often, it is very useful to consider transformations of random variables, i.e. ¢g(X). With LOTUS, we can
find E(g(X)) given the distribution of X. But how can we get the distribution of Y = g(X)? (Note that YV
is a random variable as well.)

1.9.1 Discrete

Let X be a discrete r.v. If g is one-to-one, then we know that

P(g(X)=y)=P(X =g (y)),

and we can use this substitution to easily derive the PMF for g(X).

1.9.2 Continuous

One Variable Transformations
Let’s say that we have a random variable X with PDF fx(z), but we are also interested in Y = g(X). If ¢
is differentiable and one-to-one (every value of X gets mapped to a unique value of Y), then the following

change-of-variables formula holds:
dx

dy

fr(y) = fx ()

We can then differentiate to get the PDF. We differentiate the left side with respect to y and right size with

respect to x, and the extra

% term on the right comes from using the chain rule.

We can alternatively write the change-of-variables formula as

fy(w)dy = fx(z)dz,

where the term fy (y)dy can be interpreted as the probability that Y is in a tiny interval of length dy (with
an analogous interpretation for fx (x)dx). It makes intuitive sense to set the quantities fx (z)dx and fy (y)dy
equal to one another: the probability that g(X) is in a tiny interval of g(z) values should equal the original
probability that X is in a tiny interval of = values, since Y = ¢g(X) is a deterministic function of X.

It may seem kind of odd to have %' Don’t panic! Just remember that

dx 1

— =
dy di/
Tips for applying the change-of-variables formula:

1. Make sure g is differentiable and one-to-one. A good sign of this is if g is strictly increasing or strictly
decreasing.

2. Express your final answer for the PDF of Y as a function of y.

3. Specify the support of Y.

4. We can choose whether to compute Z—”y” or % (and take the reciprocal) - these give the same result.

Two-Variable Transformations
Similarly, let’s say we know the joint distribution of U and V but are also interested in the random vector
(X,Y) found by (X,Y) = g(U,V). If g is differentiable and one-to-one, then the following is true:

3(u, v) rel
fxy(x,y) = fuv(u,v) ‘ ‘ = fuv(u,v)|| & §
6(z,y) o 5



The outer || signs around our matrix tells us to take the absolute value. The inner || signs tells us to the
matrix’s determinant. Thus the two pairs of || signs tell us to take the absolute value of the determinant
matrix of partial derivatives. In a 2x2 matrix,

The determinant of the matrix of partial derivatives is referred to the Jacobian, denoted as J.

a

Z H:|ad—bc

Su  du

dx 5 _
o o =
oz Sy

We can generalize this to multi-variable transformations:

Multi-Variable Transformations . .
Let X = (x1,...,X,) be a continuous random vector with joint PDF fz. Let Y = ¢g(X) be an invertible
function, and mirror this by letting i/ = g(¥). Since g is invertible, we also have that X = g=!(Y).

: o Oy : . . oz
If all the partial derivatives a—l exist and are continuous, we can form the Jacobian matrix J = 97 =
Yj Y
Sxy dzy bzq
o 5%/1 oy T 5?{”
J = ? = : : .
4 Sry bz Szn
0y1 0yY2 T O0Yn

We can check whether g is invertible by verifying that the determinant of J is not 0. In that case, the joint
PDF of Y is

o @) = fela™ @ |52

—

Z
| is the absolute value of the determinant of 7

—

Y

or
where ’ —
| o7

1.9.3 Convolutions

A convolution is the sum of independent random variables. We have already seen a few examples of this:
e Binomial: If X;,..., X, are i.i.d. Bern(p), then X; + ...+ X,, ~ Bin(n, p).
e Negative binomial: If Gy,...,G, are i.i.d. Geom(p), then G1 + ... + G, ~ NBin(r, p).
e Poisson: If X;,..., X, are i.i.d. Pois()\), then X5, +... + X,, ~ Pois(nA).

e Normal: If X ~ N(p1,0?) and Y ~ N(p2,03), and X and Y are independent, then X + Y ~
N (1 + p2, 0f + 03).

In the general case where X and Y can have any distribution (they just need to be independent), we can
find the distribution of T'= X + Y by using convolution sums and integrals.

Convolution Sum: used for discrete X and Y.

P(T=1t)=) PY=t-2)P(X=x)=)» P(X=t-y)PY =y).

Note: This is just LOTP, conditioning on the possible values of X (or the possible values of V).

Convolution Integral: used for continuous X and Y.

ety = [ T (e — @) fx(a)da = / T - y) fy (y)d.
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1.10 Order Statistics

1. What is an order statistic? Say we have n i.i.d random variables X7, Xs5,..., X,,. If we arrange
them from smallest to largest, the ith element in that list is the ith order statistic, denoted X ;). X(1)
is the smallest out of X1,...,X,, and X(;,) is the largest. The order statistics are dependent random
variables — for any value of X(;), X(;j11) > X(5).

2. Distribution: Taking n i.i.d. random variables X, X5, X3,...X,, with CDF F(z) and PDF f(x),
the CDF and PDF of X(;) are as follows:

P (0) = PXg) <) =30 ()l = Pl
k=i

n—1 i—1 n—i

Fxop@)=n{_ JF@)™ (1= FX)"" f(z)

In general, the order statistics of Xy,..., X, will not follow a named distribution, but the order

statistics of the standard Uniform distribution are an exception.

3. Order Statistics of Standard Uniforms: Let Uy,...,U, be ii.d Unif(0,1). Then for 0 < z <
1, f(z) = 1 and F(z) = x, so the PDF of Uy; is

n—1\ ._ e
frg@ =" )= .
j—1
This is the Beta(j,n — j + 1) PDF! So Uy, ~ Beta(j,n — j + 1), and E(U(;)) = i -
n

Again, this is the key takeaway: U(;) ~ Beta(j,n —j +1).

4. Universality of the Uniform: We can also express the distribution of the order statistics of n i.i.d.
random variables X1, X5, X3,...X,, in terms of the order statistics of n uniforms. We have that

F(X(j) ~ Ug.

1.11 Conditional Expectation and Variance
Intuitively, as we receive more and more information, our perceptions on how a random variable behaves
will naturally change. As such, we introduce conditional expectation and conditional variance.
We provide the following definitions and theorems:
1. Conditional Expectation (given an event): Let A be an event with positive probability.

i) If Y is a discrete random variable, then:

E(Y|A) =) y- P(Y =y|4)

ii) If Y is a continuous random variable, then:

oo

E(Y]A) = / y- f(y|A)dy

Note that we can calculate the conditional PDF f(y|A) in two ways:
a)
d

F614) = T-F(s14) = d%P(Y < ylA)
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b)
PAY = y)f(y)
P(A)

In both the discrete and continuous cases, E(Y|A) is a fixed value!

fylA) =

2. Law of Total Expectation (LOTE): Let A;... A, be a set of events that partition the sample
space. Intuitively, this means that at most one of A; ... A, can occur at any given time, but also that
at least one of A ... A, must occur at any given time. Succintly, one and only one of A;... A, can
occur. Then, for any random variable Y, we have:

EY)= ZE(Y|Ai) - P(A;)
i=1
Doesn’t this look similar to and sound similar to LOTP? Well, that’s not a coincidence! What if Y

was an indicator variable?

3. Conditional Expectation (given the event that another random variable takes on a specific
value: Yes, this is a super long title, but we will soon see why this level of specificity is necessary. Let
X be a random variable, and suppose we know that X crystallizes to little . Note that X crystallizing
to little = is an event!

i) If Y is a discrete random variable, then we have the following:

E(YIX=2)= Yy P(Y = y|X = 2)

ii) If Y is a continuous random variable, then we use the conditional PDF fy|x (y|x):

oo

B(Y|X =) = / v frix (ylo)dy

What is important to note is that E(Y|X = z) is always a function of little x — in other words, a
special g(z). Now, to find E(Y|X), we simply replace every little z we see with a big X (see below).

4. Conditional Expectation (given a random variable, in general): Let Y and X be random
variables. Intuitively, the conditional expectation of Y given X, written as E(Y|X), (notice how we do
not specify what specific value X takes on) can be thought of as our best prediction of Y, assuming
we get to know X.

To be clear, E(Y|X), is itself a random variable. Again, F(Y|X) is a random variable! In
fact, E(Y|X) is actually a random variable that is a function of X — in other words, think
of F(Y|X) as a really special g(X).

As alluded to earlier, the general strategy for finding E(Y'|X) is to first find E(Y|X = x) for some
dummy variable x. Then, wherever we see little z, we plug in a big X.
5. Now, we present a few useful properties of conditional expectation:

i) Independence: If X and Y are independent, then E(Y|X) = E(Y).
ii) Taking out what’s known: For any function h, E(h(X)Y|X) = h(X) - E(Y|X).
iii) Linearity of Expectation: Conditional expectations are still expectations!
EY1 +Y2|X) = E(V1]X) + E(Y2|X)
For any constant ¢, we have:

E(cY]X) = cE(Y]X)
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6. Adam’s Law: This theorem is typically used when we want to find a marginal expectation. Sometimes,
a marginal expectation might be hard to find on its own, but a conditional expectation might be easier.

E(Y) = E(E(Y|X))

Again, E(Y|X) is a function of the random variable X. Thus, the outer expectation is taken with re-
spect to the random variable X! In other words, we can find the expectation of Y by first conditioning
on a random variable that we wished we knew — in this case, X.

Of course, we can also condition on more than one random variable. We present to you, Adam’s Law
with Extra Conditioning: Let X, Y, Z be random variables. Then, we have:

E(Y|Z) = E(E(Y|X, Z))

7. Conditional Variance: Similar to conditional expectation, we can also define construct conditional
variance. The conditional variance of Y given X is defined as the following:

Var(Y|X) = E<(Y - E(YX))2|X>

Equivalently, we have:
Var(Y|X) = E(Y?X) - E(Y|X)E(Y|X)

Again, just like the conditional expectation F(Y|X), the conditional variance Var(Y|X) is also a
random variable — namely, a function of X!

8. Eve’s Law: Sometimes, we want to find the marginal variance of Y, but it might be a bit difficult.
At times, it may be easier to work with the conditional distribution of Y given X:

Var(Y)=EVar(Y|X)) + Var(E(Y|X))

Intuitively, think of a population where each person has a value of X (their age) and a value of Y (their
height). E(Var(Y|X)) can be interpreted as the “within-group variation,” or the average amount of
variation in height within each age group. Var(E(Y|X)) can be interpreted as the “between-group
variation,” which can be construed as the variance of average heights across different age groups. Eve’s
Law tells us that the total variation within the population is derived from the sum of these two sources
of variation.

27



1.12 Statistical Inequalities
We begin by presenting a collection of commonly-used inequalities in statistics:
1. Cauchy-Schwarz: Let X and Y be r.v.s with finite variances. Then, we have:
[E(XY)| < VE(X?)E(Y?)
2. Jensen’s Inequality: let X be a random variable.
(a) Let g be a convex function (a.k.a. “concave up”). Then, we have the following:
E(g(X)) > g(E(X)).
(b) Let h be a concave function (a.k.a. “concave down”). Then, we have the following:
E(h(X)) < ME(X)).

Remember the caveman and his cave! If you can fit a caveman underneath the function g
to protect him from the rain, then g is concave! Else, it is convex! Also, remember that
equality only holds if g has a second derivative of 0 (i.e., g is just a straight line).

“Convex” means that the 2nd derivative > 0. “Concave” means the 2nd derivative < 0.
A straight line is both convex and concave!
3. Markov’s Inequality: Let X be a random variable, and let a > 0 be a constant. Then, we have:
E(|X
P(x]2 a) < ZXD
a

4. Chebyshev’s Inequality: Let X be a random variable with mean p and variance o2. Let a > 0 be
a constant. Then, we have:

[\

o

PIX —plza)< %

5. Chernoff’s Inequality (est. Harvard University, Professor Emeritus Herman Chernoff):
Let X be a random variable, and let a > 0 and ¢ > 0 be constants. Then, we have:

E(GtX)

P(X >a)< ot

Note that the numerator is the MGF of X, if it exists.

1.13 Limit Laws
1.13.1 Law of Large Numbers

For this section, let X;, X5, X3,... be i.i.d random variables with finite mean y and finite variance 2. For
any positive integer n, define the following:

X1+ Xe+ X,
X, = 1+ Xo---+

n
X, is referred to as the “sample mean” of X; through X,. Note that the “sample mean” is itself still
2

a random variable with mean p and variance - (you can verify this using linearity of expectation and

properties of variance). Now, we present two critical results regarding how sample means behave as n
increases. Intuitively, the “sample mean” X,, “converges” to the true mean pu.

1. Strong Law of Large Numbers (SLLN): Intuitively, the sample mean X, converges to the true
mean 4 “pointwise.” Mathematically, we say that P(X, — u) = 1.

2. Weak Law of Large Numbers (WLLN): The WLLN states that the sample mean X,, “converges
in probability” to the true mean p. Mathematically, for any € > 0, we have:

P(|X,, —p| >€) = 0,asn —
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1.13.2 Central Limit Theorem

For this section, too, let X1, X, X3,... be i.i.d random variables with finite mean x and finite variance o2,
Again, for any positive integer n, let X,, denote the sample mean of X; through X,,:

b _ Xt X4 Xy

n

n

The WLLN and SLLN tell us that as n — oo, the sample mean will eventually converge to the true mean
. But we also may want to know what distribution the sample mean adopts as n — co. The Central Limit
Theorem answers this question:

1. Central Limit Theorem: As n — 0o, we have the following “asymptotic distribution” for X,,:

Xn_u

Vvn ( ) — N(0,1)

The left-hand-side of this expression is known as the “standardized form” of X,: we standardize a
random variable by subtracting its mean and dividing by its standard deviation. Intuitively, the above
expression means that as n gets large, the CDF of X,, will become closer and closer to @, the CDF of
the standard Normal distribution.

2. Central Limit Theorem, Approximation Form Let n be a large positive integer. Then, we have
the following approximate distribution for X,,:

*The “~” symbol means “approximate distribution.”

The beauty of the Central Limit Theorem is that it does not care about what the original distribution
of each individual X; is — the X, could be Poisson, Geometric, Cauchy, or some weird (but valid)
distribution with finite mean and variance, but in the long run, the sample mean will always converge
to a normal distribution (with some terms and conditions beyond the scope of this course).

*Note that both CLT and LLN do not apply to the Cauchy distribution (because the mean is not defined).

Long story short, the Law of Large Numbers tells us what specific value X,, will converge
to as n — co. We’re not concerned with the distribution at n = co (yes, mathematically an
abomination, but we’ll let it slide): we know that X,, will converge to a constant at n = co.

The Central Limit Theorem tells us that on our long, windy, flower-filled path towards
n = o (yes, I know it’s mathematically an abuse of notation), our X,, will have an ap-
proximately Normal distribution. The mean and variance of this approximate Normal
distribution can be directly calculated using the tools we have at hand (like linearity of
expectation, variance of a sum, etc.)
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1.14 Markov Chains
1.14.1 Introduction and Markov Property

Definition: A Markov chain is a sequence of random variables Xy, X1, Xo,... taking values in the state
space {1,2,..., M}, where for all n > 0,

P(XnJrl :]|Xn = 7;7an1 = infla”'uXO = ZO) = P(XnJrl :]|Xn = Z)

We call the above expression the Markov property, and in words, it states that given the entire past
history Xg, X1,...,X,, only the most recent term, X,,, matters for predicting X, ;1.

e If we think of time n as the present, then another way to conceptualize the Markov Property is that
given the present, the past and the future are conditionally independent.

The quantity P(X,4+1 = j| X, = ?) is called the transition probability from state i to state j.

The state space of a Markov chain is the set of possible values of the X,,. Since we deal with Markov chains
with a finite state space in this class, we can express the state space as the finite set {1,2,..., M}.

1.14.2 Transition Matrix

To describe the dynamics of a Markov chain, we need to specify the probabilities of moving from any state
to any other state, that is, P(X,,+1 = j|X,, =) for all 4,5 € {1,..., M}. We present the following concepts
and definitions:

1. The transition matrix ) = (g;;) accomplishes this by storing all of the transition probabilities
¢ij = P(Xy41 = j| X, = 1). Remember that i always indexes rows and j always indexes columns!

(a) The (7,4) entry of @ (i.e. row ¢, column j) is the probability of moving from state i to state j in
one step of the Markov chain.

(b) If our state space is {1,..., M}, then @ will be an M x M matrix.
(c) Each row of @ sums to 1. (Think about why this is so!)

Example: Suppose we had the following transition matrix for a two-state Markov chain:

S R
S (1/2 1)2
R\2/3 1/3
These transition probabilities can also be represented with a diagram:

2/3

172

Each state is represented by a circle, and each arrow indicates a possible one-step transition and the
corresponding probability of that transition being realized.
2. n-Step Transition Probabilities: The n-step transition probability qgl) is the probability of being
at state j exactly n steps after being at state ¢. To find this, we can take the nth power of the transition
matrix @, through matrix multiplication:
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3.

qg-l) is the (i,7) entry of Q™.
Marginal Distributions: We can get the marginal distribution of X, as follows:
P(X,, = j) is the jth component of tQ",
where t = (t1,t9,...,ty) and t; = P(Xo = i). Note that this means we need to know not only the

transition matrix but also the initial conditions of the Markov chain. We obtain the above result
through LOTP, conditioning on Xy. The probability that the chain is in state j after n steps is

M M
P(X, =)= Y P(Xo = )P(X, = j|Xo = i) = 3 tugl}”,
i=1 =1

which is the jth component of tQ™ by definition of matrix multiplication.

1.14.3 Classification of States (Transience and Periodicity)

Here, we introduce terminology for describing the various characteristics of a Markov chain.

Properties of States

1.
2.
3.

4.
o.

Recurrent: A state is recurrent if it can be visited over and over again in the long run.
Transient: A state is transient if there is a positive probability of never returning to it.

Period: The period of a state i is the greatest common divisor of all the possible numbers of steps it
can take to return to state ¢ when starting at <.

Periodic: A state is periodic if its period does not equal 1.

Aperiodic: A state is aperiodic if its period equals 1.

Properties of Markov Chains as a Whole

1.

3.
4.

Irreducible: A Markov chain is irreducible if for any two states i and 7, it is possible to go from 7 to j
in a finite number of steps. This means that we can get to any state from any other state. Irreducible
implies that all states are recurrent and that all states have the same period.

. Reducible: A Markov chain that is not irreducible is considered reducible.

Aperiodic: A Markov chain is aperiodic if all of its states are aperiodic.

Periodic: A Markov chain that is not aperiodic is considered periodic.

*note: “Aperiodic” and “periodic” are used to describe both individual states and Markov Chains as a whole!
Double-check the context in which these terms are used!

1.14.4 Stationary Distribution

In the long run, Markov chains will eventually spend all its time in recurrent states — but what fraction of the
time will it spend in each of the recurrent states? This question is answered by the stationary distribution
of the chain. For irreducible and aperiodic Markov chains, the stationary distribution tells us both the
long-run probability of being in any state, and the long-run proportion of time the chain spends in each
state, regardless of initial conditions. We provide the following definitions and properties:

1.

Definition: A row vector s = (s1,...,s5) (where s; > 0 and ), s; = 1 is a stationary distribution
for a Markov chain with transition matrix @ if

E Siij = 85
i
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for all j. We can also write this as one matrix equation:
s@ =S.

Intuitively, this states that if we make move while in s, we will stay in s forever, so s is
the stationary distribution.

To solve for the stationary distribution, you can solve the following matrix equation for s: (Q'—1I)(s') =
0. The ’ symbol denotes taking the transpose, and I is the identity matrix with the same dimensions

as Q.

2. Eigenvector Connection: In linear algebra terminology, s is a left eigenvector of ) with eigenvalue
1. To work with right eigenvectors (the calculation of which is more often taught in linear algebra
classes), note that s is a right eigenvector of Q7', where the T operator means taking the transpose of
matrix Q.

3. Stationary Distribution is Marginal: Note that s is the marginal distribution of X,,. The condi-
tional PMF of X, given X,,_1 = i is still given by the ith row of the transition matrix Q.

4. Existence and Uniqueness: For every irreducible Markov chain, there exists a unique stationary
distribution.

5. Convergence: Let Xy, Xi,... be an irreducible, aperiodic Markov chain with stationary distribution
s and transition matrix @. If we run this chain for a long time, the marginal distribution of X, will
converge to s regardless of initial conditions. We write this as P(X,, = i) — s; as n — co. In terms of
@, Q™ converges to a matrix in which each row is s.

6. Expected Time to Return: Say we had an irreducible Markov chain with stationary distribution
s, and let r; be the expected time it takes the chain to return to state i, given it starts at . Then

1
S; = —.
T

1.14.5 Reversibility

The reversibility condition for a Markov chain helps us find the stationary distribution in the scenario that
we have a large state space and it is difficult to compute. We provide the following definitions and concepts:

1. Definition: Let @ be the transition matrix of a Markov chain. Suppose there is s = (s1,...,sp) with
Siqij = Sjqji

for all states ¢ and j, then the chain is reversible with respect to s. Intuitively, reversibility means

that the chain behaves the same way regardless of whether time runs forwards or backwards. If you

record a video of a reversible chain, and then show the video to a friend, either in the normal way or

with time reversed, your friend will not be able to tell whether time is running forwards or backwards
in the video.

2. Reversible implies Stationary: If a chain is reversible with respect to some row vector s, then we
know that s is the stationary distribution. Proof is by the following equality:

E Sidij = E 8j45i = 8 E dji = Sj,
i i i

where the last equality holds because each row of ) sums to 1.
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1.14.6 Three Specific Types of Reversible Markov Chains, and their Stationary Distributions

In this section, we introduce three types of reversible Markov chains with stationary distributions that are
quick and easy to find:

1. Symmetric Matrix

(a) If @ is a symmetric matrix (i.e. g;; = g;;), then the reversibility condition is satisfied, and the
stationary distribution is uniform over the state space:

s=(1/M,1/M,...,1/M).
(b) A generalization of (1): if each column of the transition matrix @ sums to 1, then
s=(1/M,1/M,...,1/M)
is a stationary distribution.

2. Random Walk on an Undirected Network Think of a network as a collection of nodes joined
by edges; the network is undirected if direction does not matter, i.e. edges can be traversed in any
direction. The degree of a node is the number of edges attached to it, and the degree sequence of a
network with nodes 1,2,...,n is the vector d = (di, ..., dy), where d; is the degree of node j.

(A self-loop —i.e. edge from node to itself — counts 1 towards the degree of a node.)

Example: the following undirected network has degree sequence d = (4, 3,2, 3, 2).

oe!

If a Markov chain is a walk on an undirected network, then
diqiy = d;jq;i,

and the stationary distribution is proportional to the degree sequence. In the example above, then,

4 3 2 3 2
s=—,—,—, —, — .
147147147147 14
3. Birth-Death Chain: A birth-death chain is a type of Markov chain where it is only possible to go
one step to the left or one step to the right (except at boundaries), but it is impossible to jump farther

than one step. Formally, ¢;; > 0if |i — j| = 1, and ¢;; = 0 if |[¢ — j| > 2. Below is an example of a
birth-death chain (loops from a state to itself are allowed to have 0 probability):

A birth-death chain is reversible! We can construct the stationary distribution by letting
51412923 - " qj—1,5
S5 =
q5,5—-195-1,5—2 " - 421
for all states 2 < j < M. We then choose s; such that the s; sum to 1.
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1.14.7 Markov Chain Monte Carlo

A Monte Carlo method involves generating random values to approximate a quantity. We study Markov
Chain Monte Carlo, a class of algorithms that allows us to, given some stationary distribution s, essentially
build our own Markov chain whose stationary distribution is s. Specifically, we look at the Metropolis-
Hastings algorithm within the MCMC class:

Let s = (s1,...,sm) be our desired stationary distribution, and suppose P = (p;;) is the transition matrix for
the Markov chain we currently have. We can run P, but it does not have the desired stationary distribution.
Our goal is to modify P and construct a new Markov chain Xj,..., X,,... so that it does have our desired

stationary distribution s.

In the algorithm, we start at any state Xy, and suppose we are currently at X,,. To make one move of the
new chain, we do the following:

1. If X,, =1, propose a new state j.

2. Compute the acceptance probability:

. (8iPji
a;; = min (#7 1).
SiDij

3. With probability a;;, accept the proposal (i.e., go to j), setting X, 11 = j. Otherwise, stay at i (i.e.
Xpy1 =1).
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Table of Distributions

Note that discrete and continuous distributions are separated by double horizontal lines.

Distribution

PDF and Support Expectation Variance
Bernoulli P(X=1)=p
Bern(p) P(X =0)=gq p Pq
Binomial P(X =k)= (Z)pk(l - p)nik
Bin(n, p) ke{0,1,2,...n} np npq
Geometric P(X =k)=q"p
Geom(p) ke{0,1,2,...} a/p a/p?
Negative Binom. P(X =n)= (l’tffl)Prqn
NBin(r, p) ne{0,1,2, ...}
Hypergeometric P(X =Fk)= ()02
Hypergeometric(w, b, n) ke{0,1,2,...,n} n= % E1-£)
e—)x)\k
Poisson P(X =k)= 7l
Pois(A) ke{0,1,2,...} A A
_ 1
Uniform f(z) =34 ]
Unif(a, b) x € (a,b) ot (b;;)
Normal flx) = - 127re_(m e
N(u,0?) x € (—00,00) L o?
Exponential f(z) = Xe ™
Expo(A) x € (0,00) L/x 1/52
Gamma (@)= F(la)()‘x)ae_/\gg%
Gamma(a, \) x € (0,00) a/x a/y?
Beta flx) = FIEEI(;JIEE)ZZ) 21— )"
a u(l—p
Beta(a, b) z €(0,1) p= ot (/a(+b+;1))
Chi-Squared syt e
X2 z € (0,1) n 2n
Multinomial P(X =)= (nl.v.l.nk)p?l Sept Var(X;) = np;(1 - p;)
Mult (n, p) n=mn;+ng+---+ng np Cov(X;, X;) = —npip;

NOTE: Negative Binomial is number of failures until r successes. Negative Binomial is NOT the total

number of trials.
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